Infrastructure / Mining

More Details about Our Mining Systems

Mining Measurement Automation Platforms

From an asset management perspective, automated instrumentation enables much more responsive decision-making, allowing for quasi-real-time monitoring. In mining processes, there are many examples of applications of this approach:

Tailings Production—With increasingly stringent legal constraints, mining companies have automated their tailings spigot disposal systems to produce according to the water input reaching the tailings disposal structure reservoirs, ensuring the safe operation of their structures.

Activation of Spillway Structures—Tailings dams have automatic activation systems for spillway structures based on reservoir levels, an excellent measure to eliminate the risk of overtopping.

Automated Instrumentation—Whether crackmeters in underground caverns, inclinometers on open-pit mine slopes, or piezometers installed in tailings piles, automated instruments are becoming more common to obtain quasi-real-time data, thus prioritizing actions pertinent to asset safety management.

Environmental Monitoring—Due to environmental constraints, many weather stations are often installed in remote locations with difficult access. Automated monitoring allows more frequent data collection without site visits.

Slope Stability—Slope movement can be monitored 24/7 for long periods in harsh conditions with instantaneous communication alarms when critical thresholds have been met.

Our platforms' versatility allows them to be customized for each application. We offer a range of platforms, from the most basic device with just a few channels to expandable platforms that measure hundreds of channels. Scan rates can be programmed from once every few hours to 10,000 times per second, depending on the model. Measurement types, processing algorithms, and recording intervals are also programmable.

The measurement automation platform has a simple, yet powerful on-board instruction set. Simply choose the sensor type, scan rate, and measurement channel. On-board mathematical and statistical processing allows data reduction in the field and enables measurements to be viewed in the desired units, whether that is microstrains, centimeters per second, revolutions per minute, meters, Amperes, or inches.

The measurement automation platforms' versatility extends to control as well. Each platform can monitor and control external devices based on time or measured conditions, enabling the design of Emergency Action Plans and Trigger Action Response Plans (TARPs) to warn of—or possibly prevent—dangerous conditions allow time and equipment savings. Campbell Scientific platforms are rugged enough to be used in mining sites worldwide.

The measurement automation platform can stand alone. After it is programmed and powered, no human or computer interaction is required, although data are typically downloaded to a PC or exported to the cloud for further analysis. A telecommunications or hardwire link allows data to be monitored and graphed in your office rather than in the field. Data from various stations and applications can be monitored from a single laptop or desktop computer.

The low power drain typically allows our platforms to be powered by solar panels and batteries. If 110/220-Vac power or external 12-Vdc batteries are available, you can use those as well. Nonvolatile data storage and a battery-backed clock ensure data capture and integrity.

Training

Campbell Scientific offers training courses that can be conducted at your location and customized to meet your specific needs. Hands-on training with our engineers helps ensure your system provides the site condition data you need today and into the future.

Sensors Used for Mining Measurements

Our measurement automation platforms' flexibility begins with sensor compatibility. Our platforms can measure virtually every commercially available sensor, allowing them to be used in different ways for a variety of measurements. For example, the following are common parameters that the sensors in our platforms measure:

  • Pore water pressure
  • Water level
  • Water flow
  • Settlement
  • Displacement
  • Strain
  • Stress
  • Tilt
  • Inclination
  • Weight
  • Force
  • Pressure
  • Deflection
  • Barometric pressure
  • Temperature
  • Humidity
  • Elevation

More specifically, these are the sensor types commonly used in our measurement automation platforms:

  • Piezometers
  • Pressure transducers
  • Inclinometers
  • Tiltmeters
  • Settlement sensors
  • Borehole pressure cells
  • Earth pressure cells
  • Load cells
  • Pressure cells
  • Accelerometers
  • Vibrating wire strain gauges
  • Foil-bonded strain gauges
  • Extensometers
  • Jointmeters
  • Crackmeters
  • Strainmeters
  • Deformation meters
  • Barometers
  • Tilt beams
  • Stressmeters
  • Thermistors
  • Thermocouples
  • Deformation sensors
  • Sonic water-level sensors
  • Displacement transducers
  • Linear variable differential transformers (LVDT)

Because our measurement automation platforms have many channel types and programmable inputs, all these sensor types can be measured by one device. Channel types include analog (single-ended and differential), pulse counter, switched excitation, continuous analog output, digital I/O, and anti-aliasing filter. Using switched or continuous excitation channels, our platforms provide excitation for ratiometric bridge measurements.

The following are common sensor measurement types that our measurement automation platforms are compatible with:

  • Frequency
  • Resistance
  • Voltage
  • Ratiometric
  • Current
  • Modbus RTU
  • RS-485
  • SDI-12
  • RS-232

Communications

Multiple communications options are available for retrieving, storing, and displaying data, allowing platforms to be customized to meet your exact needs. Onsite communications options include direct connection to a PC or laptop, PC cards, storage modules, and platform keyboard/display. Telecommunications options include short-haul, telephone (including voice-synthesized and cellular), radio frequency, multidrop, and satellite. A telecommunications or hardwire link allows critical data to be monitored and graphed in your office 24/7 rather than only in the field. Data from various stations and applications can be monitored from a single laptop or desktop computer.


Unlock the power of instrumentation and monitoring with our various geotechnical training options. 


Case Studies

South Dakota: Rock Stability in Large Underground Excavation
The Homestake Neutrino Experiment—also referred to as the “Davis Experiment” after physicist Ray Davis, who......read more
South America: Mine Tailings in Tailings Dams
Background Tailings dams are crucial components of mining operations, responsible for storing water used in the......read more



Privacy Policy Update

We've updated our privacy policy.  Learn More


Customise a System

In addition to our standard systems available, many of the systems we provide are customised. Tell us what you need, and we’ll help you configure a system that meets your exact needs.